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Theory of Time-Domain Quasi-TEM Modes
in Inhomogeneous Multiconductor Lines

ISMO V. LINDELL, SENIOR MEMBER, IEEE, AND QIZHENG GU

Abstract —Theory for quasi-TEM modes propagating in a transversely
inhomogeneous (multidielectric), longitudinally uniform transmission line,
previously derived for time-harmonic waves, is derived for transient sig-
nals. It is seen that, while the starting point for the theory is completely
different, the result is similar to the time-harmonic theory, and previously
derived properties for propagating modes also apply in the transient case.
The range of applicability is discussed with a simple example.

I. INTRODUCTION

HE INHOMOGENEOUS multiconductor transmis-

sion line is interesting because of the wide field of
applications of the microstrip structure. In the case of
time-harmonic (sinusoidal) fields, the exact TEM modes
for this kind of geometry, do not exist. Before the intro-
duction of a theory for the quasi-TEM modes, there
were often erroneous assumptions about the nature of
fields propagating in such structures. The exact theory
for two-conductor lines was first given by dos Santos and
Figanier in 1975 [1}, generalized to multiconductor lines
by Mannersalo in 1977 (not published) and, in a more
complete form, by Lindell in 1981 [2]. There also exist
other expositions on the subject [3], [4].

As pointed out in [2], the transverse quasi-TEM mode
field is a kind of glued-together pair of static electric and
static magnetic fields, whose boundary conditions are con-
nected through a pair of consistency equations, which
also determine the propagation properties of the quasi-
TEM wave. The longitudinal components can be calcu-
lated from the transverse components and they are low for
small frequencies. This theory was obtained by expanding
all unknown quantities in series of ascending powets of the
frequency. How this can be generalized to fields of arbi-
trary time dependence is not evident, because there does
not exist a small parameter like w. However, obviously, a
similar theory should apply for transient signals whose
spectrum consists of sufficiently low frequencies. A need
for a firm foundation for such a theory exists because of
the new generation of computers applying microstriplike
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geometry and rapid pulsed signals, although the important
wavelengths of such signals are still large with respect to
transverse measures of the line. Calculations of coupling
between such signals applying the ideal TEM mode ap-
proximation have recently been presented [5], [6].

The theory given here is not based on an asymptotic
(perturbational) series approach, but on an iterational
consideration, which starts on a quasi-TEM assumption,
proceeds to derive properties for such a field, and finally
tries to find out conditions of validity for the original
assumption.

II. THE ITERATION METHOD

The following theory of mode propagation in a trans-
versely inhomogeneous multiconductor waveguide, Fig. 1,
is a companion to that given in [2] and uses much of the
same notation, the main difference being that the sub-
scripts z are deleted. The electromagnetic field is studied
in terms of its transverse and longitudinal components,
respectively, transverse and parallel to the guide axis vec-
tor u: .

E(F,t)=é(F,t)+ ue(F,1) 1)

H(F,t) =h(F,t)+uh(F,1). ()

When the Maxwell equations are written for the decom-
posed fields and the resulting equations are decomposed

into axial and transverse components, we have the set of
equations '

v, Xe=—iupd,h (3)
vV, Xh=1ed,e (4)
v, e=—0az+d,ax(ph) (s)

Vv, h=—03,h—3ux(e) (6)
v, ()= —ede (7)
V. (ph) =—pd.h. (8)

Here, v, denotes the transverse component of v; p and e
are functions of the transverse vector p, and the partial

“derivatives JF/d¢ are denoted in short by d,F.

Equations (3)—(8) are exact. As a starting point to the
iteration method leading to the quasi-TEM theory, we
assume that the right-hand sides of (3), (4). (7), and (8) are
small and approximate them by zeros. This assumption
will be studied more closely later on. After solving for the
transverse fields on the left-hand side, the longitudinal

0018-9480 /87 /1000-0893$01.00 ©1987 IEEE



894 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 10, oCcTOBER 1987

So
?\\\\\\\\\\ NN NJ
: '.‘ K @ «(p)
‘ . ulp)
DAREREE S @Sl .
AN NN VAN ]

Fig 1. Cross section of the transversely inhomogeneous multiconductor
line with N conductors S, and a conducting sheath S;. The unit vector
% and z coordinate are perpendlcula.r to the plane.

fields are solved from (5) and (6). The iteration could be
continued by substituting these on the right-hand sides of
(3), (4), (7), and (8), and solving for the next approxima-
tions for the transverse fields. The process will evidently
converge if the longitudinal fields are small enough. Here,
we are only concerned with the first round of iteration,
which gives us static approximation of the transverse fields
and quasi-static approximation of longitudinal fields.

III. STATIC APPROXIMATION

Setting e =0 and A =0 in the four equations (3), (4),
(7), and (8) gives us equations for the first approximation
of the transverse fields &, a,:

v, Xey(r,t)=0

(9)

v, (&) =0 (10)
v, Xhy(F,t)=0 (11)
v, -(phy) =0. (12)

Equations (9) and (10) constitute an electrostatic problem
in two dimensions, and as the boundary conditions on the
conductors we have

iXe,=0. (13)

Correspondingly, (11) and (12) define a magnetostatic
problem with the boundary conditions

irhy=0.

(14)
Here, 7 denotes the unit vector normal to the conductor
boundaries. The static problems can be treated with poten-
tial quantities. In fact, defining the electric field in terms
of a scalar potential ¢:

eo(F t)=—v ¢(F.1)

(15)

(9) will be automatically satisfied, whence the equations
for ¢, from (10) and (13), are

VJ_'(evﬂb) = (16)

o(r,t)y=U(z,t) forpes,. (17)

Here, S; denotes the surface of the ith conductor, i=
0,1,- - -, N. For simplicity, we assume that there is a sheath
conductor denoted by i =0 and define U, =0 so that U,

means the voltage between the ith conductor and the
sheath. The present theory is not limited to closed geome-
tries. If the correct behavior of potential functions in the
infinity is taken into account, the analysis can be written
in very much the same fashion. However, instead of defi-
ning voltages with respect to the sheath, another reference
potential (“ground”) must be assumed.

The solution of (16) and (17) obviously depends on the
set of boundary values U,(z,t), which can be represented
as an N-vector U(z, t). To be able to write the solution for
any boundary values, we must solve N different normal-
ized problems for functions ¢,(p), making up an N-vector
function &(p), satisfying the boundary conditions ¢, =1
on § and ¢, =0 on all the other conductors (i # j). The
soluuon correspondmg to the boundary value vector U(z, t)
can then be written as

o(7,2) =Y Ul(z,1)$,(p) =U(z,1)° 6(p)-

=1

(18)

Here, we have adopted the notation o for the inner
product of two N-vectors to distinguish it from the “dot”
product of two vectors in the physical three-space.

In the same manner, the magnetostatic problem can be
formulated in terms of an axial vector potential A= uA:

p(p)ho(F, 1) =v LA(F, 1) X . (19)
Equation (12) is automatically satisfied through (19). Out
of (11) and (14) comes

Vl-(%VlA)=0 (20)

A(F,t) =¥,(z,1) (21)

Here, ¥, denotes the magnetic flux/unit length between
the conductor i and the sheath. In terms of a geéneral
solution N-vector A(p) and a set of boundary values
¥(z, t) the solution can be written as

A(F 1) =¥(z, 1) A(F). (22)

In the electrostatic problem (16), (17), the boundary-
value voltage N-vector uniquely defines the quantities Q,,
i.e., the charge /unit length on each conductor through

0,(z,t) = gﬁeeo dl = ¢ea—¢dl (23)

where C, denotes the circumference of the ith conductor.
The linear relation between the voltage and charge N-vec-
tors can be written in terms of a static capacitance/unit
length matrix C

forpeS,.

0(z,t)=CoU(z,1).

For the magnetostatic problem, there is also a linear
relation between the magnetic fluxes and the currents 7, on
the conductors, defined by

¢ 1d4 P
cM dn

1,(z,t)=¢cz0-di=
I(z,¢)

where L is the inductance/unit length matrix.

(24)

(25)

¥(z,t)= (26)
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1V. THE QUASI-TEM FIELD

Until now, the two static problems have no connection.
The boundary value N-vectors are, however, coupled
through (5) and (6). From (5), we can solve the approxi-
mate longitudinal component e;:

e (7,1)=03,0(F, 1)+ 3,4(F,t). (27)

The corresponding approximation for the longitudinal
magnetic field s, cannot be obtained from (6) explicitly:

Vo h(F,t) == 3,hy(F,t)—uXed,éy(7,t)

1
=uX ;VL&AUJ)+ﬁQ&¢UJ).(%)

Because the right-hand side of (28) is curl free, as can
easily be checked, #; can be obtained through integration
from a reference point p, to the general point p. Integrat-
ing round the conductor i, the integral should vanish since
h, 1s a unique physical quantity. To obtain unique values
for &, from (28) by integration, one more condition for 4,
is needed, because the reference value ,(p,) is not known.
The missing condition is obtained by integrating (3) over
the waveguide cross section, which gives us zero if Stokes’
theorem is invoked, because the line integral of the electric
field around the perimeter vanishes. Thus, 3, [hdS =0, or
the integral is constant in time. If the fields are switched
on at some finite time, the constant is zero and we have for
the additional condition for ki,

hy(7,t)dS=0 - (29)
J

where S is the total cross section surface of the waveguide.

Because of the boundary condition e; =0 on the con-
ductors, (27) defines a relation between the boundary
values of the potentials ¢ and A:

dU(z,t)+3¥(z,t)=0. (30)

This is, in fact, one form of writing the Faraday law, in
which a moving magnetic flux produces an induced volt-
age. The other equation, (28), gives rise to another relation
between integrated quantities of the potentials ¢ and 4, in
the form of a continuity equation:

a,I(z,t)+9,0(z,t)=0.
Substituting from (24) and (26), we have

(31)

0U(z,t)=—L°3I(z,1)
8. 1(z,t)=—Co9,U(z,1).

(32)
(33)

These are recognized as transmission-line equations for a
multiconductor line. Eliminating I, we have the wave
equation

(34)

Here, [ denotes the N X N unit matrix. Limiting ourselves
to the solution traveling in the positive z direction, the
operator in (34) can be halved to produce the equation

(35)

(921- LoC02)oU(2.1) =0.

(0.0+(L>C)"0,)U(z.1) =0.
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Because C and L are positive definite and symmetric
matrices, there exists a square-root matrix ( LeoC )1/2 which
is positive definite. Hence, it possesses a complete set of
eigenvectors and positive eigenvalues, and the solution of
(35) can be written in terms of the solutions of

1
Vie =V,
UJ

(Loc)” (36)

Corresponding to each eigenvector ¥/ there exists a
mode of the original problem, whose voltage vector can be
written as

U/(z,t)=V'f(z—-vt) (37)
with an arbitrary function f,. Thus, the eigenvalues of the
algebraic equation (36) define the velocities of the N
quasi-TEM modes on the inhomogeneous waveguide. The
current distribution vector corresponding to the jth mode,
I, satisfies similar equations but with L and C inter-
changed. As in [2], this leads to an eigenvector different
from UY, in general, which means that there does not exist
a simple scalar impedance, but the impedance is a matrix
quantity, denoted here by Z.

V. TRAVELING WAVE SOLUTIONS

The practical multiconductor line problem, with possible
small deviation from axial uniformity, can be treated with
traveling wave quantities with less effort than with cur-
rent /voltage quantities. In fact, we can define the voltage
wave vectors [7] by )

U,=UzZoI

(38)

where the impedance matrix is defined in any of the
following equivalent forms [2]:
z=(Le¢)">

C'=Co(C L)

=(Log) PoL=Lo(coL)""

(39)
It must be noted that since in the general case the matrices
C and L do not commute, the square root of their product
is dependent on the order of the product. Solving the
voltage and current vectors from (38) in terms of voltage
waves and substituting in (32) give us the two equations

(40)

It is seen that equations (40) are uncoupled for both
traveling voltage vectors. Thus, they possess solutions of
the type

U, (z,0)+(LoC) U, (z,8)=0.

U, (z,6) =V (zF vp).

(41)

For a line with slight nonuniformity along its axis,
equations (40) can be generalized to possess a perturba-
tional coupling term on the right-hand side [5], [6].

It is also easy to show that the integral of the Poynting
vector 1, X h} over the cross section equals the sum of
LU » I'*, or the propagating power in the quasi-TEM mode
can be expressed in terms of fields or boundary values.
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VI. ON THE VALIDITY OF THE QUASI-TEM
CONCEPT

After having calculated the approximate longitudinal
field components in terms of the approximate transverse
components, we can substitute them on the right-hand
sides of (3), (4), (7), and (8) and calculate a better ap-
proximation for the transverse fields, é,,,. For these
fields not to differ from the original approximations &,, &,
significantly, the right-hand sides should be small. What
does this mean? Obviously, in order to be able to ap-
proximate the transverse curl operations in (3) and (4) by
zero, the right-hand sides should be small with respect to
other derivatives than curl of the vector functions on the
left-hand sides. In this case, the iteration would converge
and the terms already calculated would present a reason-
able approximation to the fields.

Let us study the question in terms of simple considera-
tion of order. If, for example, the following inequality is
valid:

IV Lol > 10,1 (42)

then obviously from (3), vV X &, is small when compared
to other transverse derivatives of e, and it can be ap-
proximated by zero. Thus, when solving the next itera-
tional step, the transverse field €, in terms of k; from (3),
the solution e, does not differ from &, very much. Now
the order of v, is 1/D, where D is the transverse
dimension of the guide. If the dimension of the axial
variation of the fields is L, we have f’(z — v,¢) of the order
f(z—uv,t)/L, where v, is the phase velocity of the mode
and from (28) and (42) we may write

2
€| > ,wp(—L—) |= o+ 0,5 X €2q|. (43)

This mequality is obviously valid if D/L is small enough,
ie., if the transverse dimension of the guide is small
enough with respect to field variations in the z direction.
In other words, the variation of the signal should be so
slow that the propagating field does not change much at
the distance of the transverse dimension in z direction. But
this is not all, because the vector term on the right-hand
side may also be small.. This happens if the inhomogeneity
of the guide is small. In fact, if the guide becomes homoge-
neous, the solution of (20) becomes a multiple of the
solution of (16) and the relation obtained from (30) is
¢=v,4, or from (15) and (19) hy=u X &,/n, with n =
pv, =1/€v,, which makes the right-hand side of (43) vanish.
If the inhomogeneity is small, the term need not vanish,
but it is small and (43) is valid for larger values of the ratio
D/L. ,
There does not seem to be an easy way to express the
condition of validity in more exact terms. A simpler condi-
tion is obtained if the ratios |e;|/|&,), |h,|/ /| are consid-
ered. This not only shows us that the basic approximation
of the field is quasi TEM, but also gives an idea on the

Fig. 2. The inhomogeneous coaxial cable. Basic wave is a TE wave,
which is quasi-TEM for sufficiently slowly varying transient signals
and /or small inhomogeneity (small ¢, —1).

convergence. In fact, writing

leaf (2= 1,t) |¢—va|=1£ (¢ —4)eV| (44)
8ol | f(z=v,t) | V.ol | f] IVioeV]

we may require this to satisfy the condition < 1. The last
factor is zero for homogeneous line and small for small
inhomogeneity. Because the maximum values of ¢ and 4
are their boundary value 1, it is obviously bounded by the
value 2D, which shows us that the quasi-TEM mode is
always possible if the signal is varying slowly enough.

VIIL

Let us elucidate the problem of convergence through a
simple example of inhomogeneous coaxial cable with p = p.,,
ande,=1forf=6---wande,#1for@=0--- — 7 Fig.
2. Because of the special symmetry, the potential fields ¢
and A are multiples of the same function g(p):

ExAMPLE

(45)

The inductance is the same as for the homogeneous coaxial

line:
| Fo b
L=L,=—In|—
o= 5|2 (46)
and the capacitance equals
1+e, 7(1+e€,)e,
=57 |G= 5 (47)
: In ~—)
a
The phase velocity of the quasi-TEM wave is
1 2
v (48)

PTLe Y 1re,
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The potentials are
¢(7,1) =Vg(p)f(z—u,t)

A(r, ) =Yg(p)f(z— vpt) =

(49)
g(p)f(z—v,t). (50)

| <

<

P
From (27) we have

er=Vg(p)f(z~u,t)- vp;—/g(p)f’(z —g,t)=0 (51)°

?

or the longitudinal electric field vanishes in this approxi-
mation, Thus, the quasi-TEM is in fact a TE field in this
approximation, which is due to the special symmetry of the
structure. From (28) we have

W = o [ o))

(m-v, g)dC+ h;(fo). (52)

-The unit vector m is normal to the integration path.
Because m -V | g(p) =0 on each radial line, it is clear that
h, is a function of @ only. Thus, the integration path can
be taken along any circle of radius p. If the constant %,(7,)
is determined through the condition (29), the result is

(i 1) = |14 ) €, —1 a7
o(7,0) = nln(b/a)f (== U”t) J2(e, +1) (wl_ 5)

for —m <l <.

. (53)

This expression is seen to vanish for €, =1, in which case
the guide is homogeneous. The null field is obtained for
0=+ m/2 and maxima at 6 =0,7. To check the quasi-

TEM character of the wave, we compare the magnitudes of
hy and h: ’

el bt ey (TR R

The maximum value of the last factor is #b/2. Thus, the
right-hand side of (54) gives us the relative rate of change
of the signal in the axial direction over the distance
(e,—1)7b/2(e, +1). Obviously, the convergence of the
iteration is good and the quasi-TEM concept valid if this
rate is small. '

€, —1
€ +1

VIII.‘ CONCLUSIONS

The quasi-TEM mode theory of inhomogeneous multi- '

conductor waveguides, previously presented for time-
harmonic fields, was generalized for fields with arbitrary
time dependence. The theory is based upon an.iterative
approach, and the condition for its convergence was out-
lined and elucidated with a simple example. It was seen
that the resulting theory, basically similar to that given for
the time-harmonic case, can be applied for transient sig-
nals, provided the variation of the signal is slow enough or
the inhomogeneity is not too large.
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