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Abstract —Theory for quasi-TEM modes propagating in a transversely

inhomogeneous (multidieleetric), longitudinally uniform transmission line,

previously derived for time-harmonic waves, is derived for transient sig-

nals. It is seen tfmt, while the starting point for the theory is completely

different, the result is similar to the time-ha~onic theory, and previously

derived properties for propagating modes also apply in the transient case.

The range of applicability is discussed with a simple example.

I. INTRODUCTION

T HE INHOMOGENEOUS multiconductor transmis-

sion line is interesting because of the wide field of

applications of the microstrip structure. In the case of

time-harmonic (sinusoidal) fields, the exact TEM modes

for this kind of geometry, do not exist. Before the intro-

duction of a theory for the quasi-TEM modes, there

were often erroneous assumptions about the nature of

fields propagating in such structures. The exact theory

for two-conductor lines was first given by dos Santos and,

Figanier in 1975 [1], generalized to multiconductor lines

by Mannersalo in 1977 (not published) and, in a more

complete form, by Linden in 1981 [2]. There also exist

other expositions on the subject [3], [4].

As pointed out in [2], the transverse quasi-TEM mode

field is a kind of glued-together pair of static electric and

static magnetic fields, whose boundary conditions are con-

nected through a pair of consistency equations, which

also determine the propagation properties of the quasi-

TEM wave. The longitudinal components can be calcu-

lated from the transverse components and they are low for

small frequencies. This theory was obtained by expanding

all unknown quantities in series of ascending powers of the

frequency. How this can be generalized to fields of arbi-

trary time dependence is not evident, because there does

not exist a small parameter like a. However, obviously, a

similar theory should apply for transient signals whose

spectrum consists of sufficiently low frequencies. A need

for a firm foundation for such a theory exists because of

the new generation of computers applying microstriplike

Manuscript received January 3, 1987; revised May 18, 1987. This work

was supported by the Academy of Finland, by the Joint Service Electron-
ics Programs under contract DAAL03-86-K-0002, by the Army Research

Office under Contract DAAG29-85-K-O079, and by the Office of Naval

Research under Contract NOOO14-86-~-0533.

I. V. Linden is with the Department of Electrical Engineering, Helsinki

University of Technology, Otakaari 5A, Espoo 15, 02150 Finland.
Q. Gu is with the Research Laboratory of Electronics, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA 02139.

IEEE Log Number 8716175.

geometry and rapid pulsed signals, although the important

wavelengths of such signals are still large with respect to

transverse measures of the line. Calculations of coupling

between such signals applying the ideal TEM mode ap-

proximation have recently been presented [5], [6].

The theory given here is not based on an asymptotic

(perturbational) series approach, but on an iterational

consideration, which starts on a quasi-TEM assumption,

proceeds to derive properties for such a field, and finally

tries to find out conditions of validity for the original

assumption.

II. THE ITERATION METHOD

The following theory of mode propagation in a trans-

versely inhornogeneous multiconductor waveguide, Fig. 1,

is a companion to that given in ~2] and uses much of the

same notation, the main difference being that the sub-

scripts z are deleted. The electromagnetic field is studied

in terms of its transverse and longitudinal components,

respectively, transverse and parallel to the guide axis vec-

tor ii:

~(7,1) =Z(j,t)+ iie(i, t) (1)

R(F,l)= z(7, t)+iih(7, t). (2)

When the Maxwell equations are written for the decom-

posed fields and the resulting equations are decomposed

into axial and transverse components, we have the set of

equations

Vlx?=–iipa,h (3)

VL x$=iki?te (4)

vLe=–azz+atzx(pi) (5)

vLh=–azZ–a,iix(6z) (6)

vle(t~)=–ca=e (7)

vl. (pi) =–pd, h. (8)

Here, V* denotes the transverse component of v; p and c

are functions of the transverse vector ~, and the partial

derivatives 8F/i3t are denoted in short by J(F.

Equations (3)-(8) are exact. As a starting point to the

iteration method leading to the quasi-TEM theory, we

assume that the right-hand sides of (3), (4), (7), and (8) are

small and approximate them by zeros. This assumption

will be studied more closely later on. After solving for the

transverse fields on the left-hand side, the longitudinal
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Fig 1. Cross section of the transversely inhomogeneous multiconductor

line with N conductors S, and a conducting sheath SO. The unit vector
ii and z coordinate are perpendicular to the plane.

fields are solved from (5) and (6). The iteration could be

continued by substituting these on the right-hand sides of

(3), (4), (7), and (8), and solving for the next approxima-
tions for the transverse fields. The process will evidently

converge if the longitudinal fields are small enough. Here,

we are only concerned with the first round of iteration,

which gives us static approximation of the transverse fields

and quasi-static approximation of longitudinal fields.

III. STATIC APPROXIMATION

Setting e = O and h = O in the four equations (3), (4),

(7), and (8) gives us equations for the first approximation—
of the transverse fields Z., ho:

Vlxzo(i, t)=o (9)

V1. (tzo) =0 (lo)

vLxzo(7, t)=o (11)

V1. (pio)=o. (12)

Equations (9) and (10) constitute an electrostatic problem

in two dimensions, and as the boundary conditions on the

conductors we have

Zx@o=o. (13)

Correspondingly, (11) and (12) define a magnetostatic

problem with the boundary conditions

fi.; o=o. (14)

Here, ii denotes the unit vector normal to the conductor

boundaries. The static problems can be treated with poten-
tial quantities. In fact, defining the electric field in terms

of a ;calar potential O:

Zo(?, t) = —vL@’

(9) will be automatically satisfied,

for +, from (10) and (13), are

V.. (EVL+) =

7,1) (15)

whence the equations

o (16)

+(i,t)=q(z,t) for~=Si. (17)

Here, Si denotes the surface of the i th conductor, i =

o,l,.. - , N. For simplicity, we assume that there is a sheath

conductor denoted by i = O and define U. = O so hit U,

means the voltage between the i th conductor and the

sheath. The present theory is not limited to closed geome-

tries If the correct behavior of potential functions in the

infinity is taken into account, the analysis can be written

in very much the same fashion. However, instead of defi-

ning voltages with respect to the sheath, another reference

potential (“ground”) must be assumed.

The solution of (16) and (17) obviously depends on the

set c)f boundary values U, ( z, t), which can be represented

as an N-vector U( z, t). To be able to write the solution for

any boundary values, we must solve N different normal-

ized problems for functions ~, ( j5), making up an N-vector

function o(p), satisfying the boundary conditions @j= 1

on S, and O, = O on all the other conductors (i+ j). The

solution corresponding to the boundary value vector U( z, t)

can then be written as

+(~>t)= ~ ~(z>t)+,(~)=u(z>~)”~(~). (18)
~=1

Here, we have adopted the notation o for the inner

product of two N-vectors to distinguish it from the “dot”

product of two vectors in the physical three-space.

In the same manner, the magnetostatic problem can be

formulated in terms of an axial vector potential ~= id:

P(P)~o(~, t)=vl A(i, t)xti. (19)

Equation (12) is automatically satisfied through (19). Out

of (“11) and (14) comes

()1VL’ –VLA =0
P

(20)

A(7, t)=*, (z, t) for~=SI. (21)

Here, ‘1, denotes the magnetic flux/unit length between

the conductor i and the sheath. In terms of a general

solution N-vector A(~) and a set of boundary values

V(z, t) the solution can be written as

A(7, t)= Y(z, t)0A(~). (22)

In the electrostatic problem (16), (17), the boundary-

value voltage N-vector uniquely defines the quantities Ql,

i.e., the charge/unit length on each conductor through

where C, denotes the circumference of the i th conductor.

The linear relation between the voltage and charge N-vec-

tors can be written in terms of a static capacitance/unit
length matrix ~—

Q(z>z)=g”u(z, t). (24)

For the magnetostatic problem, there is also a linear

relation between the magnetic fluxes and the currents 1, on

the conductors, defined by

*(z, t)=& oz(z, t) (26)

where ~ is the inductance/unit length matrix.—
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IV. THE QuAsI-TEM FIELD

Until now, the two static problems have no connection.

The boundary value N-vectors are, however, coupled

through (5) and (6). From (5), we can solve the approxi-

mate longitudinal component el:

el(;, t) = Oz@(;, t)+ d, A(i, t). (27)

The corresponding approximation for the longitudinal

magnetic field hl cannot be obtained from (6) explicitly:

Vlhl(z, t) = – dzz~(;, t)–tixcd[zo(i, t)

=ilx
[ 1:V~~Z~(~,t)+CVldt@(i,t) . (28)

Because the right-hand side of (28) is curl free, as can

easily be checked, h ~ can be obtained through integration

from a reference point POto the general point ~. Integrat-

ing round the conductor i, the integral should vanish since

hl is a unique physical quantity. To obtain unique values

for Izl from (28) by integration, one more condition for hl

is needed, because the reference value h I( PO) is not known.

The missing condition is obtained by integrating (3) over

the waveguide cross section, which gives us zero if Stokes’

theorem is invoked, because the line integral of the electric

field around the perimeter vanishes. Thus, d,]hdS = O, or

the integral is constant in time. If the fields are switched

on at some finite time, the constant is zero and we have for

the additional condition for hl

L()hl ?,t dS=O (29)

where S is the total cross section surface of the waveguide.

Because of the boundary condition el = O on the con-

ductors, (27) defines a relation between the boundary

values of the potentials ~ and A:

dzu(z, t)+ a,~(z,t) =0. (30)

This is, in fact, one form of writing the Faraday law, in

which a moving magnetic flux produces an induced volt-

age. The other equation, (28), gives rise to another relation

between integrated quantities of the potentials $ and A, in

the form of a continuity equation:

dzl(z, t)+ d, Q(z, t) =0. (31)

Substituting from (24) and (26), we have

dzu(z,t) = –&” d,l(z, t) (32)

dgI(z, t) = –go d,u(z,l). (33)

These are recognized as transmission-line equations for a

multiconductor line. Eliminating 1, we have the wave

equation

( )azz~–~o~a: Ou(z, t) =O. (34)

Here, ~ denotes the N X N unit matrix. Limiting ourselves

to the-solution traveling in the positive z direction, the

operator in (34) can be halved to produce the equation

(d.l+(&Og)’/2dt) .u(z,t)=o. (35)
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Because ~ and ~ are positive definite and symmetric

matrices, ~here exi~ts a square-root matrix (~ o @2 which

is positive definite. Hence, it possesses a =om~lete set of

eigenv;ctors and positive eigenvalues, and the solution of

(35) can be written in terms of the solutions of

(&”Q)l’2 ; ~
~J7~=_~~ (36)

Corresponding to each eigenvector V~ there efists a

mode of the original problem, whose voltage vector can be

written as

(37)uJ(z, t) = Wf(z-u,t)

with an arbitrary function &. Thus, the eigenvalues of the

algebraic equation (36) define the velocities of the N

quasi-TEM modes on the inhomogeneous waveguide. The

current distribution vector corresponding to the jth mode,

ZJ, satisfies similar equations but with ~ and ~ inter-

changed. As in [2], this leads to an eige~vector ~ifferent

from UJ, in general, which means that there does not exist

a simple scalar impedance, but the impedance is a matrix

quantity, denoted here by ~.

V. TRAVELING WAVE SOLUTIONS

The practical multiconductor line problem, with possible

small deviation from axial uniformity, can be treated with

traveling wave quantities with less effort than with cur-

rent/voltage quantities. In fact, we can define the voltage

wave vectors [7] by

U+= U5~OI (38)— .

where the impedance matrix is defined in any of the

following equivalent forms [2]:

g=(~o Q) ’/’o= Q’o(go&)’o&)’/’

= (L@”l’2 -o~=&@@-1’2. (39)

It must be noted that since in the general case the matrices

Q and ~ do not commute, the square root of their product

~ depe~dent on the order of the product. Solving the

voltage and current vectors from (38) in terms of voltage

waves and substituting in (32) give us the two equations

8zfY+(z, t)+(@’2” atui(z, t) =0. (40)

It is seen that equations (40) are uncoupled for both

traveling voltage vectors. Thus, they possess solutions of

the type

(41)u~(z, t)=vJ~(zw JJt).

For a line with slight nonuniformity along its axis,

equations (40) can be generalized to possess a perturba-

tional coupling term on the right-hand side [5], [6].

It is also e~sy to show that the integral of the Poynting

vector ~ZO x h $ over the cross section equals the sum of

~ U o 1“, or the propagating power in the quasi-TEM mode

can be expressed in terms of fields or boundary values.
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VI. ON THE VALIDITY OF THE QuAsI-TEM

CONCEPT

After having calculated the approximate longitudinal

field components in terms of the approximate transverse

components, we can substitute them on the right-hand

sides of (3), (4), (7), and (8) and calculate a better ap-

proximation for the transverse fields, .Z2,~ ~. For these

fields not to differ from the original approximations 2., ~ ~

significantly, the right-hand sides should be small. What

does this mean? Obviously, in order to be able to ap-

proximate the transverse curl operations in (3) and (4) by

zero, the right-hand sides should be small with respect to

other derivatives than curl of the vector functions on the

left-hand sides. In this case, the iteration would converge

and the term’s already calculated would present a reason-

able approximation to the fields.

Let us study the question in terms of simple considera-

tion of order. If, for example, the following inequality is

valid:

then obviously from (3), v X .ZOis small when compared

to other transverse derivatives of 20 and it can be ap-

proximated by zero. Thus, when solving the next itera-

tional step, the transverse field Zz in terms of Al from (3),

the solution Zz does not differ from 20 very much. Now

the order of v ~ is l/D, where D is the transverse

dimension of the guide. If the dimension of the axial

variation of the fields is L, we have ~’( z – ypt)of the order

f(z – upt)/L, where u, is the phase veloclty of the mode
and from (28) and (42) we may write

This inequality is obviously valid if D/L is small enough,

i.e., if the transverse dimension of the guide is small

enough with respect to field variations in the z direction.

In other words, the variation of the signal should be so

slow that the propagating field does not change much at

the distance of the transverse dimension in z direction. But

this is not all, because the vector term on the right-hand

side may also be small. This happens if the inhomogeneity

of the guide is small. In fact, if the guide becomes homoge-

neous, the solution of (20) becomes a“ multiple of the

solution of (16) and the relation obtained from (30) is

0 = UP~, Or from (15) and (19) ~0= ii x 20/TJ, with q =
p VP= l/t VP,which makes the right-hand side of (43) vanish.

If the inhomogeneity is small, the term need not vanish,

but it is small and (43) is valid for larger values of the ratio

D/L.

There does not seem to be an easy way to express the

condition of validity in more exact terms. A simpler condi-

tion is obtained if the ratios lell/ \.ZO\,Ilzll/~ ~1 are consid-

ered. This not only shows us that the basic approximation

of the field is quasi TEM, but also gives an idea on the

Fig. :2. The inhomogeneous coaxiaf cable. Basic wave is a TE wave,
which is quasi-TEM for sufficiently slowly varying transient signals

and/or small inhomogeneity (smafl e, – 1).

convergence. In fact, writing

we may require this to satisfy the condition <<1. The last

factor is zero for homogeneous line and small for small

inhomogeneity. Because the maximum values of @ and A

are their boundary value 1, it is obviously bounded by the

value 2 D, which shows us that the quasi-TEM mode is

always possible if the signal is varying slowly enough.

VII. EXAMPLE

Let us elucidate the problem of convergence through a

simple example of inhomogeneous coaxial cable with p = p ~

andc, =lfor O= d.. .~andt, #l for8=0. ..–n, Fig.

2. Because of the special symmetry, the potential fields $

and A are multiples of the same function g(p):

(1in ~
\P)

g(P) = ~.

()
In –

a

(45)

The inductance is the same as for the homogeneous coaxial

line:

(46)

and the capacitance equals

l+E,

(1

7r(l+6r)co
c= — co=

2

()”

(47)

in ~
a

The phase velocity of the quasi-TEM wave is
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The potentials are

$(?,”t) = Vg(p)f(z - @ (49)

-4(7, t) =%(p) f(z-upt) = ;g(p)f(z–upt). (50)

From (27) we have

el=~g(p)f’(z– upt)–up~g(p)f’(z– Upf) =0 (51)

or the longitudinal electric field vanishes in this approxi-

mation. Thus, the quasi-TEM is in fact a TE field in this

approximation, which is due to the special symmetry of the

structure. From (28) we have

“(Ft. vlg)dC+lzl(iO). (52)

The unit vector iii is normal to the integration path.

Because z v ~ g(p) = O on each radial line, it is clear that

hl is a function of d only. Thusj the integration path can

be taken along any circle of ,radius p. If the constant hl(70)

is determined through the condition (29), the result is

v
hl(;, t)=

qln(b/a) ()
f’(z” up~) /&& 16’1-;

for-~<d<r. (53)

This expression is seen to vanish for c,= 1, in which case

the guide is homogeneous. The null field is obtained for

8 = + 7r/2 and maxima at 6 = O, n. To check the quasi-

TEM character of the wave, we compare the magnitudes of

kl and ~0:

-( )Ikl =6,–1 f’(z – Upt)

ILI 1( )1Iel–; p. (54)
E,+l f(z-vpt)

The maximum value of the last factor is rb/2. Thus, the

right-hand side of (54) gives us the relative rate of change

of the signal in the axial direction over the distance

(cr – l)~b/2(c, + 1). Obviously, the convergence of the
iteration is good and the quasi-TEM concept valid if this

rate is small.

VIII. CONCLUSIONS -

The quasi-TEM mode theory of inhomogeneous multi-

conductor waveguides, previously presented for time-

harmonic fields, was generalized for fields with arbitrary

time dependence. The theory is based upon an ~iterative

approach, and the condition for its convergence was out-

lined and elucidated with a simple example. It was seen

that the resulting theory, basically similar to that given for

the time-harmonic case, can be applied for transient sig-
nals, provided the variation of the signal is slow enough or

the inhomogeneity is not too large.
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